ezv technologies

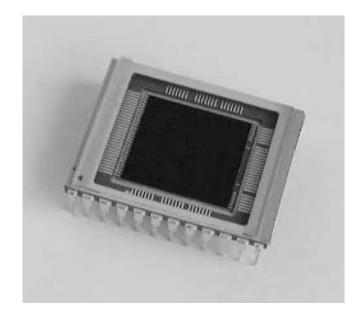
FEATURES

- 512 by 512 Image Format
- Image Area 12.3 x 12.3 mm
- Full-Frame Operation
- 24 μm Square Pixels
- Back Illuminated for High Quantum Efficiency
- Low Noise Output Amplifiers
- 100% Active Area
- Inverted Mode Operation

APPLICATIONS

- Spectroscopy
- Scientific Imaging
- Star Tracking
- Medical Imaging

INTRODUCTION


The CCD77 family of sensors are full-frame devices with readout registers above and below the image section. The top register, image section and bottom register are designated A, B and C respectively. Each register has a single output at one end and a charge injection structure at the other end for test purposes.

Standard three-phase clocking and buried channel charge transfer are employed. The image section of the device operates in inverted mode for minimum dark current. To maximise the dynamic range, the CCD is manufactured without anti-blooming structures.

The e2v technologies back thinning process ensures high quantum efficiency over a wide range of wavelengths. Several different anti-reflection coatings are available to suit a range of applications.

Designers are advised to consult e2v technologies should they be considering using CCD sensors in abnormal environments or if they require customised packaging.

CCD77-00 Back Illuminated High Performance IMO Device

TYPICAL PERFORMANCE

Maximum readout frequency				. 7	MHz
Output responsivity				. 2.5	ō μV/e ⁻
Peak signal				300	ke ⁻ /pixel
Dynamic range (at 20 kHz) .		~ 1	00 (000:1	
Spectral range		20	- 00	1060	nm
Readout noise (at 20 kHz) .				. 3.0) e ⁻ rms

GENERAL DATA

Format

Image area										1	2.3	Х	12.3	3	n	nm
Active pixels	(H)											5	12			
	(∨)											5	12			
Pixel size .	•				·	•	·	•	·	•	24	хź	24		ŀ	ιm
Number of o	utpu	it a	am	plif	iers	;			•							2

15 additional pixels are provided for over-scanning purposes in each register.

Package

Package size		22.6 x 29.9 mm
Number of pins		24
Inter-pin spacing		2.54 mm
Inter-row spacing		22.86 mm
Window material		removable glass
Туре		. ceramic DIL array
Weight (approx, no window)		6 g

e2v technologies (uk) limited, Waterhouse Lane, Chelmsford, Essex CM1 2QU, UK Telephone: +44 (0)1245 493493 Facsimile: +44 (0)1245 492492 e-mail: enquiries@e2v.com Internet: www.e2v.com Holding Company: e2v technologies plc

e2v technologies inc. 4 Westchester Plaza, PO Box 1482, Elmsford, NY10523-1482 USA Telephone: (914) 592-6050 Facsimile: (914) 592-5148 e-mail: enquiries@e2vtechnologies-na.com

© e2v technologies (uk) limited 2006

PERFORMANCE

	Min	Typical	Max	
Peak charge storage (see note 1)	300k	350k	-	e ⁻ /pixel
Peak output voltage (no binning)	-	875	-	mV
Dark signal at 293 K (see notes 2 and 3)	-	700	1500	e ⁻ /pixel/s
Dynamic range (see note 4)	-	100 000:1	-	
Charge transfer efficiency (see note 5): parallel serial	-	99.9999 99.9993	-	% %
Output amplifier responsivity (see note 3)	1.8	2.5	3.5	μV/e ⁻
Readout noise at 253 K (see notes 3 and 6)	-	3.0	5.0	rms e ⁻ /pixel
Maximum readout frequency (see note 7)	-	1000	7000	kHz
Dark signal non-uniformity at 293 K (std. deviation) (see notes 3 and 8)	-	175	375	e ⁻ /pixel/s
Output node capacity	-	600k	-	electrons

Spectral Response (at 253 K)

Wavelength	Minimum	Response (QE) (all Basi	c Process)	Maximum Response	
(nm)	Midband Coated	Broadband Coated	Uncoated	Non-uniformity (1၀)	
350	15	25	10	5	%
400	40	55	25	3	%
500	85	75	55	3	%
650	85	75	50	3	%
900	30	30	30	5	%

White spots

Grade 5

The uncoated process is suitable for soft X-ray and EUV applications.

NOTES

- 1. Signal level at which resolution begins to degrade.
- 2. Measured between 253 and 293 K and $V_{\rm SS}$ +9.5 V typically. Dark signal at any temperature T (kelvin) may be estimated from:

 $Q_d/Q_{d0} = 1.14 \times 10^6 T^3 e^{-9080/T}$

where Q_{d0} is the dark signal at T = 293 K (20 °C).

- 3. Test carried out at e2v technologies on all sensors.
- 4. Dynamic range is the ratio of full-well capacity to readout noise measured at 253 K and 20 kHz readout speed.
- 5. CCD characterisation measurements made using charge generated by X-ray photons of known energy.
- 6. Measured using a dual-slope integrator technique (i.e. correlated double sampling) with a 20 μs integration period.
- 7. Readout at speeds in excess of 7 MHz can be achieved but performance to the parameters given cannot be guaranteed.
- 8. Measured between 253 and 293 K, excluding white defects.

BLEMISH SPECIFICATION

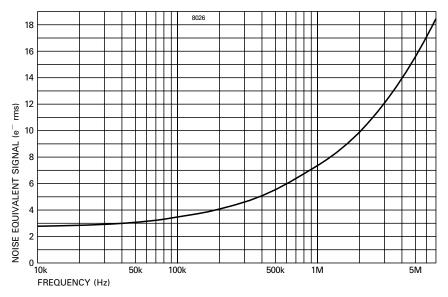
Traps	Pixels where charge is temporarily held. Traps are counted if they have a capacity greater than $200 e^-$ at $253 K$.
Slipped columns	Are counted if they have an amplitude greater than 200 $e^$
Black spots	Are counted when they have a signal level of less than 80% of the local mean at a

signal level of approximately half full-well.

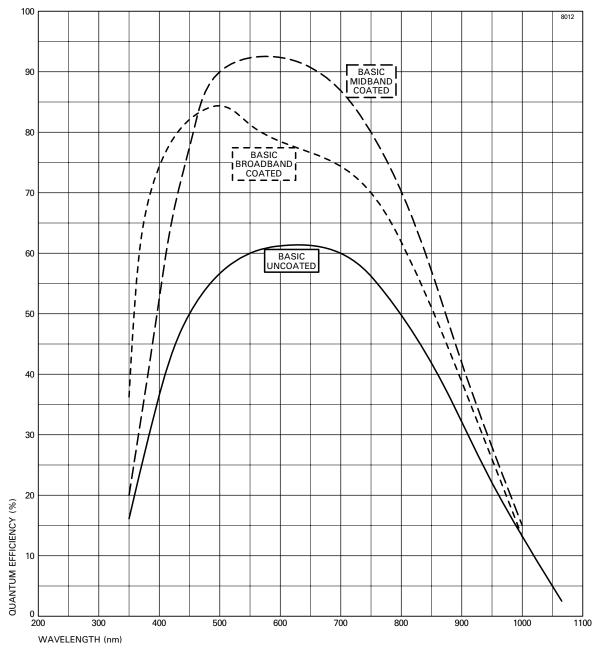
Are counted when they have a generation rate 50 times the specified maximum dark signal generation rate (measured between 253 and 293 K). The typical temperature dependence of white spot defects is different from that of the average dark signal and is given by:

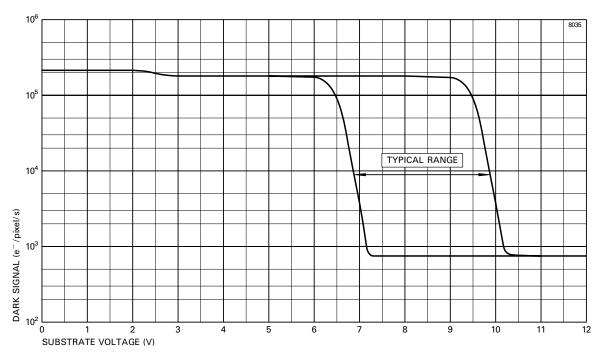
$$Q_d / Q_{d0} = 122 T^3 e^{-6400/T}$$

White column A column which contains at least 9 white defects.

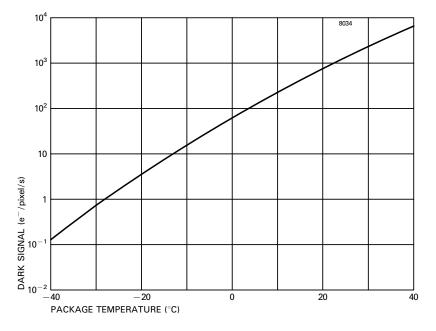

Black column A column which contains at least 9 black defects.

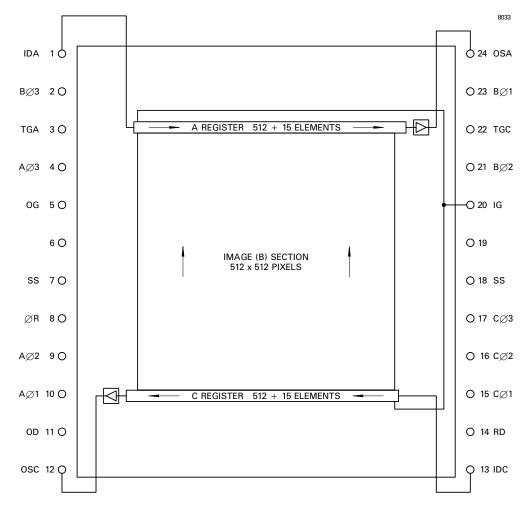
GRADE	0	1	2
Column defects: black or slipped white	0 0	2 0	6 1
Traps >200 e ⁻	2	5	10
White spots	20	30	100
Black spots	20	30	60


Devices which are fully functioning, with image quality below that of grade 2, and which may not meet all other performance parameters.


Note The effect of temperature on defects is that traps will be observed less at higher temperatures but more may appear below 253 K. The amplitude of white spots and columns will decrease rapidly with temperature.

TYPICAL OUTPUT CIRCUIT NOISE


TYPICAL SPECTRAL RESPONSE



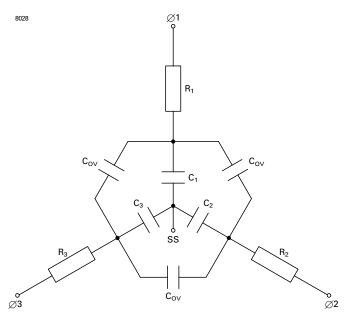
TYPICAL VARIATION OF DARK SIGNAL WITH SUBSTRATE VOLTAGE AT 20 $^\circ\text{C}$

DEVICE SCHEMATIC

			CLOCK LOW		SE AMPLIT	MAXIMUM RATINGS	
PIN	REF	DESCRIPTION	TYPICAL	Min	Typical	Max	with respect to $V_{\rm SS}$
1	IDA	Input diode A	0		see note 9		±20 V
2	BØ3	Image clock	0	10	12	15	±20 V
3	TGA	Transfer gate A	0	10	12	15	<u>+</u> 20 V
4	AØ3	Register clock A	1	8	10	15	<u>+</u> 20 V
5	OG	Output gate (A and C)	n/a	1	3	5	±20 V
6	-	No connection	0		-		-
7	SS	Substrate	n/a	8	9.5	11	-
8	ØR	Reset (A and C)	0	8	12	15	<u>+</u> 20 V
9	AØ2	Register clock A	1	8	10	15	<u>+</u> 20 V
10	AØ1	Register clock A	1	8	10	15	<u>+</u> 20 V
11	OD	Output drain (A and C)	0	27	29	32	-0.3 to +35 V
12	OSC	Output source C	0		see note 10)	-0.3 to +35 V
13	IDC	Input diode C	0		see note 9		-0.3 to +25 V
14	RD	Reset drain (A and C)	0	15	17	19	-0.3 to +25 V
15	CØ1	Register clock C	1	8	10	15	<u>+</u> 20 V
16	CØ2	Register clock C	1	8	10	15	<u>+</u> 20 V
17	CØ3	Register clock C	1	8	10	15	<u>+</u> 20 V
18	SS	Substrate	0	8	9.5	11	-
19	-	No connection	0		-		-
20	IG	Input gate	0	8	10	15	<u>+</u> 20 V
21	BØ2	Image clock	0	10	12	15	<u>+</u> 20 V
22	TGC	Transfer gate C	0	10	12	15	<u>+</u> 20 V
23	BØ1	Image clock	0	10	12	15	<u>+</u> 20 V
24	OSA	Output source A	0		see note 10)	±20 V

CONNECTIONS, TYPICAL VOLTAGES AND ABSOLUTE MAXIMUM RATINGS

Maximum voltages between pairs of pins:

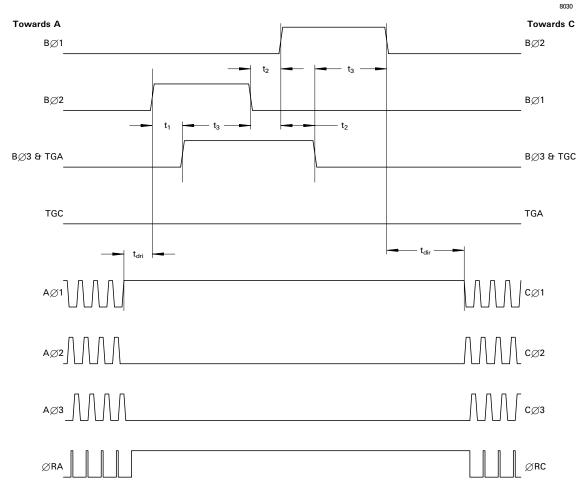

pin 11 (OD) to pin 24 (OSA)			<u>+</u> 15	V
pin 11 (OD) to pin 12 (OSC) .			<u>+</u> 15	V
Maximum output transistor current			. 10	mΑ

NOTES

- 9. For normal operation, the input gate should be set to 0 V and the input diode to approx. 22 V. To inject charge for test purposes, the input gate should be pulsed high during the period when AØ1 is high and the input diode should be adjusted for the required charge injection. Typical uses for such charge injection include assessing charge transfer efficiency, and the measurement of output responsivity using the reset drain current method.
- 10. 3 to 5 V below OD. Connect to ground using a 5 mA current source or appropriate load resistor (typically 5 k Ω).
- 11. All devices will operate at the typical values given. However, some adjustment within the minimum to maximum range may be required to optimise performance for critical applications. It should be noted that conditions for optimum performance may differ from device to device.
- 12. With the BØ connections shown, charge is transferred to the top register, A. In order to transfer charge to the bottom register, BØ1 and BØ2 connections should be reversed. Refer to the waveform diagram.

ELECTRICAL INTERFACE CHARACTERISTICS

An approximate equivalent circuit to represent the load presented by the image section or output registers is shown below.


Typical Electrode Capacitances (measured at mid-clock level)

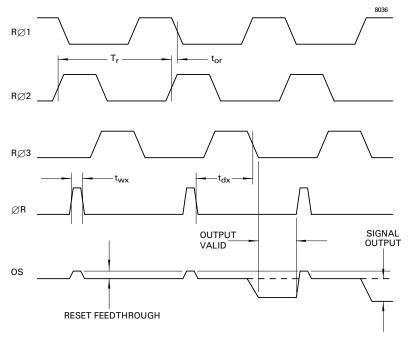
IØ/IØ inte	erph	ase	(Co))							1.6	nF
IØ1/SS ar	nd I	Ø2/	SS	(C	1, (C ₂)					3.5	nF
IØ3/SS (0) (12	nF
RØ/RØ ir	nter	ohas	se								30	рF
RØ/SS											60	рF
ØR/SS											20	рF

Typical Electrode Series Resistance

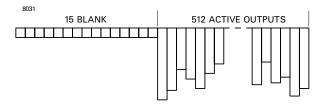
$I \oslash 1$ and $I \oslash 2$ (R_1 , R_2)				20	Ω
IØ3 (R ₃)				14	Ω
RØ1,2,3				20	Ω
Output amplifier impedance at					
typical operating conditions				400	Ω

DETAIL OF LINE TRANSFER

Clocking Sequence


During the integration period, all B \varnothing electrodes should be low - the IMO implant takes care of charge gathering.

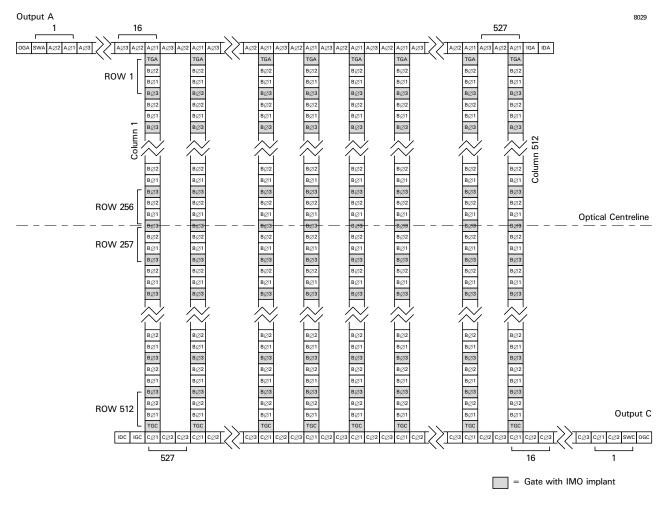
For transfer to the A register, use the labelling of waveforms on the left of the diagram. Charge is transferred to the register when $B\emptyset3$ and TGA are taken from high to low.


For transfer to the C register, use the labelling of waveforms on the right of the diagram. Charge is transferred to the register when $B\emptyset3$ and TGC are taken from high to low.

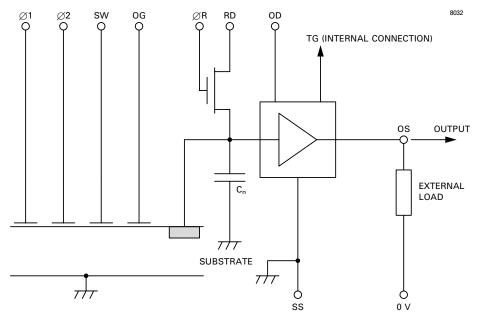
If only one register is used, the recommended approach for the unused register is to tie its clocks high and its TG low. Any charge collected in the unused register would then spill over OG and drain out through RD, thus keeping unwanted charge out of the image section. Continuous clocking of the unused register can be used but may generate extra heat, potentially causing more dark current in the image area.

DETAIL OF OUTPUT CLOCKING

LINE OUTPUT FORMAT

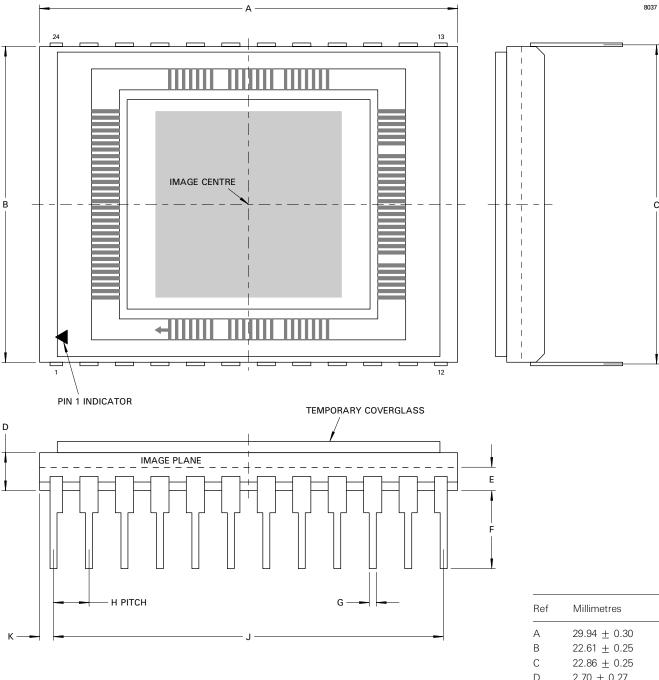

CLOCK TIMING REQUIREMENTS

Symbol	Description	Min	Typical	Max	
t ₁	Image clock overlap/delay	10.0	20.0	see note 13	μs
t ₂	Image clock overlap/delay	0.65	1.0	see note 13	μs
t ₃	Image clock overlap/delay	1.1	2.0	see note 13	μs
t _{ri}	Image clock pulse rise time (10 to 90%)	0.1	5	$T_i - 2t_{wi}$	μs
t _{fi}	Image clock pulse fall time (10 to 90%)	t _{ri}	t _{ri}	$T_i - 2t_{wi}$	μs
t _{dri}	Post register clocking delay	1.0	2.0	see note 13	μs
t _{dir}	Pre register clocking delay	1.65	3.0	see note 13	μs
t _{lt}	Line transfer/vertical shift time	16.0	32.0	see note 13	μs
Tr	Output register clock cycle period	140	1000	see note 13	ns
t _{rr}	Clock pulse rise time (10 to 90%)	20	0.1T _r	0.3T _r	ns
t _{fr}	Clock pulse fall time (10 to 90%)	t _{rr}	0.1T _r	0.3T _r	ns
t _{or}	Clock pulse overlap	10	0.5t _{rr}	0.1T _r	ns
t _{wx}	Reset pulse width	20	0.1T _r	0.3T _r	ns
t _{rx} , t _{fx}	Reset pulse rise and fall times	0.2t _{wx}	0.5t _{rr}	0.1T _r	ns
t _{dx}	Delay time, ØR low to RØ3 low	30	0.5T _r	0.8T _r	ns


NOTES

13. No maximum other than that set by system constraints on the total readout period.

FUNCTIONAL DIAGRAM


OUTPUT CIRCUIT

NOTE

14. SW is joined to \emptyset 3 in the package.

OUTLINE (All dimensions without limits are nominal)

nor	Willin Hotros	
A	29.94 ± 0.30	
В	22.61 ± 0.25	
С	22.86 ± 0.25	
D	2.70 ± 0.27	
E	1.65 <u>+</u> 0.25	
F	5.6 ± 0.5	
G	0.46 ± 0.05	
Н	2.54 <u>+</u> 0.13	
J	27.94 <u>+</u> 0.13	
К	1.0 ± 0.3	

ORDERING INFORMATION

Options include:

- Temporary Glass Window
- Permanent Window; ask for details
- UV Coating
- X-ray Phosphor Coating

In common with other e2v technologies CCD Sensors, a front illuminated CCD77-00 is available with a fibre-optic window or taper.

For further information on the performance of these and other options, please contact e2v technologies.

HANDLING CCD SENSORS

CCD sensors, in common with most high performance MOS IC devices, are static sensitive. In certain cases a discharge of static electricity may destroy or irreversibly degrade the device. Accordingly, full antistatic handling precautions should be taken whenever using a CCD sensor or module. These include:

- Working at a fully grounded workbench
- Operator wearing a grounded wrist strap
- All receiving socket pins to be positively grounded
- Unattended CCDs should not be left out of their conducting foam or socket.

Evidence of incorrect handling will invalidate the warranty.

HIGH ENERGY RADIATION

Device characteristics will change when subject to ionising radiation.

Users planning to operate CCDs in high radiation environments are advised to contact e2v technologies.

TEMPERATURE LIMITS

	Min	Typical	Max			
Storage	153	-	373	К		
Operating	153	273	323	Κ		
Operation or storage in humid conditions may give rise to ice on						
the sensor surface on cooling, causing irreversible damage.						
Maximum davias hasting/asaling			EV			

Maximum device heating/cooling 5 K/min

Whilst e2v technologies has taken care to ensure the accuracy of the information contained herein it accepts no responsibility for the consequences of any use thereof and also reserves the right to change the specification of goods without notice. e2v technologies accepts no liability beyond that set out in its standard conditions of sale in respect of infringement of third party patents arising from the use of tubes or other devices in accordance with information contained herein.